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B → D*lν (FNAL/MILC, PRD 2009)
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Inclusive (Amsler et al., PDG 2008)

|Vcb| and quark flavor physics

• |Vcb| normalizes Unitarity Triangle ~ flavor physics

• Uncertainty in SM                                               dominated by error in |Vcb|

• Uncertainty in SM εK dominated by error in |Vcb|

• > 3σ difference between SM and experimental |εK| ~ |Vcb|
4 [W. Lee et al., Lattice 2014]

– Exclusive |Vcb|, from B → D*lν at zero recoil

– New exclusive |Vcb| increases difference [FNAL/MILC, arXiv:1403.0635]

• Correlated with 3.0σ difference btwn exclusive and inclusive |Vcb|

– Difference vanishes with inclusive |Vcb|

BR(K → πνν), BR(B0
s → µ+µ−)
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• FNAL/MILC update supersedes previous ~ first determinations of |Vcb| from exclusive 
decays including vacuum polarization effects of u, d, s quarks

• Next generation intensity-frontier experiments, experimental errors below ~ 1%

• Lattice calculations with different discretizations of heavy quarks ~ cross checks of 
systematics, improved precision

• ETMC, FNAL/MILC, RBC/UKQCD, HPQCD, SWME working on B(s) → D(s)
(*)lν form 

factors for SM, BSM matrix elements [Atoui et al., Lattice 2013; DeTar et al., Lattice 2010; 
Kawanai et al., Lattice 2013; Christ et al., arXiv:1404.4670; Monahan et al., PRD 2013; Jang et al., Lattice 
2013]

Lattice calculations



|Vcb| from B → D(*)lν
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• Partial decay rates, form factor shapes, from experiment

• D(*) energy in B rest frame ~ velocity transfer ω

• Form factors from theory ~ hadronic matrix elements

dΓ

dω
(B → Dℓν) =

G2F |Vcb|2M5
B

48π3
(ω2 − 1)3/2r3(1 + r)2FD

2(ω)

dΓ

dω
(B → D∗ℓν) =

G2F |Vcb|2M5
B

4π3
|ηEW|2(1 + πα)(ω2 − 1)1/2r∗3(1− r∗)2χ(ω)FD∗

2(ω)



Form factors and matrix elements

• Vector current enters both decays, axial current enters decay to D*

• For B → D*lv at zero recoil, only axial current enters, FD*(1) = hA1(1)

• Heavy-quark symmetry implies hA1(1) ~ 1

FD(ω) = h+(ω) +

(
1− r

1 + r

)
h−(ω)

12(1− r∗)2χ(ω)FD∗
2(ω) =

[
(ω − r∗)(ω + 1)hA1(ω)− (ω2 − 1) (r∗hA2(ω) + hA3(ω))

]2

+ 2(1− 2ωr∗ + r∗2)
[
(ω + 1)2hA1

2(ω) + (ω2 − 1)hV
2(ω)

]

(vB + vD)µh+(ω) + (vB − vD)µh−(ω) =
〈D(pD)|V µ|B(pB)〉√

MDMB

i [ǫ∗µ(1 + ω)hA1(ω)− (ǫ∗ · vB)(vµBhA2(ω) + vµD∗hA3(ω))] =
〈D∗(pD∗ , ǫ)|Aµ|B(pB)〉√

MD∗MB

εµνρσǫ
∗
νv
ρ
Bv

σ
D∗hV (ω) =

〈D∗(pD∗ , ǫ)|V µ|B(pB)〉√
MD∗MB



• FNAL/MILC calculations of form factor hA1(1)

• “Discretization errors” are (mostly) heavy-quark discretization effects

• Chiral extrapolation errors ~ fit function and parametric uncertainties

• Parametric uncertainty from D*Dπ coupling

B → D*lv at zero recoil

Error PRD 2009 arXiv:1403.0635
Statistics 1.4% 0.4%
Scale (r1) error − 0.1%
χPT 0.9% 0.5%
gD∗Dπ 0.9% 0.3%
Kappa tuning 0.7% −
Discretization errors 1.5% 1.0%
Current matching 0.3% 0.4%
Tadpole tuning 0.4% −
Isospin breaking − 0.1%
Total 2.6% 1.4%
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Total 2.6% 1.4%



Approach

• Target precision:  ~ 0.7-1.0% for axial form factor at zero recoil
– May require one-loop improvement of mass-dimension 5 operators in action

• Attack chiral extrapolation errors with physical-mass gauge ensembles
– 2+1+1 flavor HISQ ensembles (MILC) [A. Bazavov et al., PRD 2010; Lattice 2010-13]

– Finite-volume effects for physical-mass pions [FNAL/MILC, arXiv:1403.0635]

• Reduce heavy-quark discretization effects (charm) with improved Fermilab 
action, currents
– HQET power counting, λ ~ aΛQCD, ΛQCD/mQ

– Improved action tree-level improved through O(λ3) in HQET [Oktay and Kronfeld, PRD 2008]

– Axial, vector currents require improvement

B

b c

D∗

Aµ

u, d



Improved action for heavy quarks

• Include irrelevant operators to approach renormalized 

trajectory for arbitrary fermion mass ~ preserve HQ symmetry, 

gauge invariance, cubic invariance, C, P, T

Sfermion = S0 + SB + SE + S6 + S7

• Generalized Wilson action

• Generalized clover terms ~ chromomagnetic and 

chromoelectric interactions

• Mass-dimension 6 and 7 bilinears

• Tree-level matching to fix coefficients

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]



Generalized Wilson action
[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

Sfermion = S0 + SB + SE + S6 + S7

• Wilson action, generalized ~ lift time-space axis-interchange 

symmetry

Dµ = (Tµ − T−µ)/(2a), △µ = (Tµ + T−µ − 2)/a2, △(3) =
3∑

i=1

△i

S0 = a4
∑

x

ψ(x)[m0 + γ4D4 + ζγ ·D]ψ(x)

− 1
2
a5
∑

x

ψ(x)[△4 + rsζ△(3)]ψ(x)

• rs ≥ 1 solves doubling, fix ζ by matching dispersion relation



Sfermion = S0 + SB + SE + S6 + S7

• Chromomagnetic and chromoelectric interactions

• cB, cE fixed by matching current ~ lattice quark interacting 

with continuum background fields

Generalized clover terms
[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Oktay and Kronfeld, PRD 2008]

SB = −1
2
cBζa

5
∑

x

ψ(x)iΣ ·Bψ(x)

SE = −1
2
cEζa

5
∑

x

ψ(x)α ·Eψ(x)

Bi =
1
2
εijkFjk, Ei = F4i, Fµν ∼ four-leaf clover



[Oktay and Kronfeld, PRD 2008]

• Mass-dimension 6 and 7 bilinears, tree-level matching suffice 

for design precision of ~ 1%

• Coefficients fixed by matching dispersion relation, current, 

and Compton scattering amplitude

S6 = a6
∑

x

ψ(x)
[
c1γiDi△i + c2{γ ·D,△(3)}

]
ψ(x)

+ a6
∑

x

ψ(x)
[
c3{γ ·D, iΣ ·B}+ cEE{γ4D4,α ·E}

]
ψ(x)

S7 = a7
∑

x

ψ(x)
∑

i

[
c4△i

2 + c5
∑

j �=i

{iΣiBi,△j}
]
ψ(x)

Sfermion = S0 + SB + SE + S6 + S7

Higher order improvement



Current improvement

• Include operators with quantum numbers of desired operator to 

approach continuum limit, for arbitrary quark masses

[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Enumerate operators ~ O(λ3) in HQET power counting

– O0 ~ same dimension as continuum operator

– On ~ correct deviations from continuum, suppressed or enhanced by 

powers of lattice spacing

• Match matrix elements to fix coefficients Cn, renormalization 

factor

– Expand in coupling, external momenta

– No expansion in quark masses, {m0a}

O = ZO({m0a}, g20)
[
O0 +

∑

n

Cn({m0a}, g20)On
]



O(λ) tree-level improvement

• Consider continuum matrix elements of b → c current with 

Dirac structure Γ, at tree-level

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• Standard relations for relativistic spinors, relativistic mass shell

〈c(ξ′,p′)|cΓb|b(ξ,p)〉 →
√
mc

Ec
uc(ξ

′,p′)Γ

√
mb

Eb
ub(ξ,p)

〈0|cΓb|b(ξ, p)c(ξ′,p′)〉 →
√
mc

Ec
vc(ξ

′,p′)Γ

√
mb

Eb
ub(ξ,p)

u(ξ,p) =
m + E − iγ · p
√

2m(m + E)
u(ξ,0), E =

√
m2 + p2



Matrix elements of lattice currents

• Consider matrix elements of b → c lattice current with Dirac 

structure Γ, at tree-level

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

〈qc(ξ′,p′)|ψcΓψb|qb(ξ,p)〉 → Nc(p′)ulatc (ξ′,p′)ΓNb(p)ulatb (ξ, p)

〈0|ψcΓψb|qb(ξ,p)qc(ξ′,p′)〉 → Nc(p′)vlatc (ξ′,p′)ΓNb(p)ulatb (ξ,p)

• Standard relations, relativistic mass shell altered by lattice 

artifacts → Lattice spinor relations, lattice mass shell (a = 1)

ulat(ξ,p) =
L+ sinhE − iγ ·K
√

2L(L+ sinhE)
u(ξ,0), coshE =

1 + µ2 +K2

2µ

N (p) =

√
L

µ sinhE
, L = µ− coshE, Ki = ζ sin pi

µ = 1 +m0 + 1
2rsζ

∑

i

(2 sin pi/2)
2



Momentum expansions

• Expand normalized continuum, lattice spinors for momentum 

small compared to 1/a, mq

[El-Khadra, Kronfeld, Mackenzie, PRD 1997]

• At p = 0, matrix elements differ only by normalization factor, 

dependent on tree-level rest mass, the lattice mass-shell energy

coshE =
1 + µ2 +K2

2µ
=⇒ eM1 = 1 +m0

ZΓ ≡ e(M1c+M1b)/2 =⇒ ZΓψcΓψb renormalized at tree-level

√
mq

E
u(ξ,p) =

[
1− iγ · p

2mq

]
u(ξ,0) + O(p2)

N (p)ulat(ξ,p) = e−M1/2

[
1− iζγ · p

2 sinhM1

]
u(ξ,0) + O(p2)



Improved quark field
[El-Khadra, Kronfeld, Mackenzie, PRD 1997; Kronfeld, PRD 2000; Harada et al., PRD 2002]

• Mismatch of matrix elements at O(p) remedied by improved 
quark field (a = 1)

• For tree-level matching of matrix elements of current between 
quark, anti-quark states, set gauge links to 1

• Note external-line factors for contractions with differentiated 
fields in lattice current

ψ(x)→ ΨI(x) ≡ eM1/2[1 + d1γ ·D]ψ(x)

ψc(x)Γψb(x)→ ΨIc(x)ΓΨIb(x)

• Calculate matrix elements of improved lattice current through 
O(p',p), equate continuum and lattice results to fix d1c, d1b

∂kψ(x) =⇒ ulat(ξ,p)→ i sin pku
lat(ξ,p)



O(λ3) tree-level improvement

• To begin, consider same current matrix elements

• Lattice spinors and mass shell modified by addition of S6, S7 to 

Fermilab action [Oktay and Kronfeld, PRD 2008]

Ki = ζ sin pi −→ Ki = sin pi

[
ζ − 2c2

∑

j

(2 sin pj/2)
2 − c1(2 sin pi/2)

2
]

• For matching given matrix elements through O(p' 3, p3), no 

other modifications enter, at tree-level

• Expand normalized continuum, lattice spinors

• Examine lattice artifacts ~ deduce field improvement terms



O(λ3) momentum expansions

• Continuum spinors through O(p3)

• Lattice spinors through O(p3)

√
mq

E
u(ξ,p) =

[
1− iγ · p

2mq
− p2

8m2
q

+
3i(γ · p)p2

16m3
q

]
u(ξ,0) + O(p4)

N (p)ulat(ξ,p) = e−M1/2

[
1− iζγ · p

2 sinhM1
− p2

8MX
2
+ 1

6
iwγkp

3
k

+
3i(γ · p)p2
16MY

3

]
u(ξ,0) + O(p4)

• MX, MY are defined in terms of couplings m0, ζ, rs, c2

• MX, MY ~ M1 as a → 0

• w is defined in terms of m0, ζ, c1

• w = rs at tree-level



External-line masses, rotation 

breaking coefficient

1

MX
2
≡ ζ2

sinh2M1

+
2rsζ

eM1

1

MY
3
≡ 8

3 sinhM1

{
2c2 +

1

4
e−M1

[
ζ2rs(2 cothM1 + 1)

+
ζ3

sinhM1

(
e−M1

2 sinhM1
− 1

)]
+

ζ3

4 sinh2M1

}

w ≡ 3c1 + ζ/2

sinhM1
= cB = rs

• MX, MY are defined in terms of couplings m0, ζ, rs, c2

• MX, MY ~ M1 as a → 0

• w is defined in terms of m0, ζ, c1

• w = rs at tree-level

[El-Khadra et al., PRD 1997]



Improved quark field

ψ(x)→ ΨI(x) ≡ eM1/2[1 + d1γ ·D+ 1
2d2△(3)

+ 1
6d3γiDi△i +

1
2d4{γ ·D,△(3)}]ψ(x)

ψc(x)Γψb(x)→ ΨIc(x)ΓΨIb(x)

• Inspecting momentum expansions, note independent structures 
of mismatches ~ one for each term at O(p2, p3)

• To match matrix elements through O(p3), consider ansatz for 

improved quark field (a = 1)

• d2 term ~ O(p2) term (MX)

• d3 term ~ O(p3) rotation breaking term (w)

• d4 term ~ O(p3) external-line mass term (MY)



Calculation of matrix elements

• For tree-level matching of matrix elements of current between 
quark, anti-quark states, set gauge links to 1

• Note external-line factors for contractions with differentiated 
fields in lattice current

△(3)ψ(x) =⇒ ulat(ξ,p)→ −
∑

i

(2 sin pi/2)
2ulat(ξ,p)

∂i△iψ(x) =⇒ ulat(ξ,p)→ −i sin pi(2 sin pi/2)
2ulat(ξ,p)

∂i△(3)ψ(x) =⇒ ulat(ξ,p)→ −i sin pi
∑

j

(2 sin pj/2)
2ulat(ξ,p)

• Matching O(p2) terms yields d2

• Matching rotation breaking terms (to zero) yields d3

• Matching rotation preserving O(p3) terms yields d4



Results

• Field improvement parameters d1, d2, d3, d4

d1 =
ζ

2 sinhM1
− 1

2mq

d2 = d1
2 − rsζ

2eM1

d3 = −d1 + w = −d1 + cB = −d1 + rs

d4 = − d1
8MX

2
+

d2ζ

4 sinhM1
+

3

16

(
1

MY
3
− 1

mq
3

)

• d1 and d2 agree with literature [El-Khadra et al., PRD 1997]

• Suffice for tree-level improvement of current matrix elements 
considered

• Perhaps many additional operators required for complete 
improvement at O(λ3)



Operators with B, E fields

• For any bilinear of mass-dimension 5, 6 in the Oktay-Kronfeld 

action, there exists a potentially necessary field improvement 

term (converse untrue ~ C, P, T)

• Simple generalization of ansatz:  Include operators with B, E

ψ(x)→ ΨI (x) ≡ eM1/2[1 + d1γ ·D + 1
2
d2△(3)

+ 1
2
idBΣ ·B + 1

2
dEα ·E

+ 1
6
d3γiDi△i +

1
2
d4{γ ·D,△(3)}

+ 1
4
d5{γ ·D, iΣ ·B}+ 1

4
dEE{γ4D4,α ·E}]ψ(x)

• Expect field improvement sufficient for tree-level current

• Complete enumeration of operators for fields, currents will tell



Summary

• Improved current matrix elements through O(p3), at tree-level

• Results apply for all Lorentz irreps; axial, vector ~ |Vcb| in SM

• Improvement achieved ~ ad hoc
– Enumerate complete sets of operators for field, current

– Matching conditions to fix improvement parameters

• HQET matching analyses
– Systematize improvement

– Assess heavy-quark discretization errors in form factors

• One-loop improvement of action, currents



Back-up slides



|Vcb| from B → D(*)lν

• Partial decay rates, form factor shapes (not normalization), from experiment

• D(*) energy in B rest frame ~ 

• Well-known quantities, kinematic factors, higher order electroweak corrections
– Coulomb attraction in charged D* final state (for neutral D*, πα → 0)

– Electroweak correction ηEW from NLO box diagrams, γ or Z exchanged with W

– phantom

– phantom

• Form factors from theory ~ hadronic matrix elements

• CKM matrix element

ω = vB · vD(∗)

r = MD/MB, r
∗ = MD∗/MB

χ(ω) =
ω + 1

12

(
5ω + 1− 8ω(ω − 1)r∗

(1− r∗)2

)

dΓ

dω
(B → Dℓν) =

G2F |Vcb|2M5
B

48π3
(ω2 − 1)3/2r3(1 + r)2FD

2(ω)

dΓ

dω
(B → D∗ℓν) =

G2F |Vcb|2M5
B

4π3
|ηEW|2(1 + πα)(ω2 − 1)1/2r∗3(1− r∗)2χ(ω)FD∗

2(ω)



Systematic errors for zero recoil calculations

• FNAL/MILC PRD 2009

– Scale r1 contributes parametric uncertainty via (very mild) 
chiral extrapolation → negligible

– Mismatch between u0 in valence, sea action

– Kappa tuning errors from statistics, fitting, discretization 
errors ~ variation of form factors

• arXiv:1403.0635

– Kappa tuning errors from statistics, fitting, included in 
statistical errors of form factor (assume independent on 
each ensemble)

– Uncertainty from scale r1 from fπ propagated from 
uncertainty in kappas ~ dominant scale error



Projected error budgets

• Projected discretization errors from power-counting estimates of heavy-quark 
errors

• “1-loop OK” means mass-dimension five operators in the action, corresponding 
operators in the current, are improved at one-loop

• “tree-level OK” means tree-level improvement for action, current

• Assumptions:  
– 8 source times per ensemble, 1000 gauge configurations on existing HISQ ensembles, 

additional ensemble with lattice spacing 0.03 fm [MILC, planned for HISQ bottom]

– Errors from statistics, kappa tuning, ChPT, gDD*π scale with statistics

– 50% of errors from ChPT, gDD*π eliminated by inclusion of physical-point ensembles

Error Lattice 2013 1-loop OK tree-level OK
Statistics 0.4% 0.3% 0.3%
χPT, gDD∗π 0.7% 0.3% 0.3%
Kappa tuning 0.2% 0.2% 0.2%
Discretization errors 1.0% 0.2% 0.7%
Current matching 0.5% 0.5% 0.5%
Isospin breaking 0.1% 0.1% 0.1%
Total 1.4% 0.7% 1.0%


